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ABSTRACT
In this  paper, we seek to develop an agent-based representation  of 
the Caltrain rail network in the San Francisco Bay Area. By 
representing the transportation network as a system of interacting 
agents, we hope to produce a realistic model of the network’s 
behavior from which we can  draw insights about its properties and 
performance.

Furthermore, we establish a model for dynamic modification of 
train routes based on passenger activity and evaluate this model’s 
performance against that  of the real-world Caltrain route schedule. 
To do this, we define a process for representing a transportation 
network as a pair of graphs and we enumerate a set of graph 
analysis procedures that allow for relative comparisons to be 
made between networks.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information Theory 
– general systems theory, information theory.

General Terms
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation, Verification.

Keywords
Transportation networks, agent-based modeling, rail networks, 
graph analysis, network representations, networked agents, system 
optimization.

1.RELEVANCE AND MOTIVATION
Public transportation networks  represent a critical component  of 
local infrastructure in cities across the world, providing mobility 
to  millions of people every  day and shaping the urban landscapes 
around them. At the same time, such transportation systems are 
the conglomeration of hundreds if not thousands of individual 
agents working to best serve the needs of a diverse set  of 
independent passengers. The result is a set of interactions that 
produce complex and often unpredictable network effects  that are 
difficult to model on a global level.

Regardless of scale or composition, all public transportation 
networks strive to maximize efficiency. The goal  is  to  allow 
passengers to reach  their destinations  quickly and easily through 
the network while maintaining  as few routes and vehicles as 
possible. Unfortunately, the complexity and scope of each system 
make this optimization difficult to perform at a theoretical  level. 
However, by using agent-based modeling we can represent 
transportation networks in terms of the thousands of interacting 
agents that they are actually composed of, allowing for analysis 
and optimization at both a local and global level.

For the purposes  of this paper, we turn our attention  specifically to 
the Caltrain rail network, running from San Francisco, CA to San 
Jose, CA. This network provides a good resource for exploration, 
with  complexities such as express trains  and variable arrival 
frequencies throughout the day, but  it  also represents a simple 
geographical structure in the form of a single, largely straight line 

running from north  to south. Beyond 
its structure, the Caltrain network 
presents a compelling cultural study, 
as the system faced a dire financial 
situation in 2011, only recently 
recovering to a more securely funded 
state [8]. Clearly, deep analysis and 
optimization have the potential to 
benefit such a financially unstable 
system, again making Caltrain an 
intriguing target for study in this 
paper.

Despite these motivating factors, the 
overall trajectory of this paper will 
not be to develop a specific method 
for the optimization of rail  networks. 
Instead, we will  undertake a process 
of experimentation with these 
networks’  underlying behaviors, 
ul t imately  pursuing a deeper 
understanding of the mechanisms 
that contribute to or detract from the 
performance of a transportation 
system.

2.LITERATURE 
REVIEW
This paper follows upon multiple works which have sought  to 
apply computer-based modeling to the operation of public 
transportation networks, in addition to a few works that have 
developed frameworks for analyzing and comparing the properties 
of these networks.

Of particular interest is the work of Heidergott  and  De Vries [6], 
which demonstrates the use of discrete event systems to build a 
control theory framework for public transit. The authors focus on 
the specific problem of a train waiting on another train which is 
delayed in order to  accommodate a connection, but  in the process 
of approaching this problem they also define a model for a 
complete transportation network, even if it is  only used to 
represent a simple example network.

In the work of Arentze and Timmermans  [1], the authors develop 
a learning-based passenger travel model based on consumer 
choice heuristics. Crucially, the work focuses on representing 
passenger travel through a network as a bridge between two 
activities, one at the source of their trip and one at their 
destination. The combination of this approach with an analysis of 
the physical and social constraints that govern passenger behavior 
results in a conceptually sound, if somewhat complex, model of 
such behavior.

On another front, the work of Sienkiewicz and Holyst [10] 
concerns the examination of public transportation networks 
throughout 22 cities in Poland. In  both this and work by Seaton 
and Hackett [9] on the Boston and Vienna subway systems, the 
authors use universal tools of complex network analysis to make 

Figure 1. The Caltrain 
rail network [2]



comparisons between the properties  of different transportation 
networks, as well  as predictions regarding those networks’ 
structures and behavior.

Finally, in a previous work by the author of this paper [7], a set  of 
network analysis procedures is defined and integrated with the 
commonly used  General Transit Feed Specification (GTFS) [5] 
data format to create a semi-automatic procedure for 
transportation system analysis that is  shown to be effective at 
identifying differences in network properties and overall system 
robustness.

3.PROPOSED RESEARCH QUESTIONS
By modeling the individual components  of the Caltrain rail 
network as agents, we hope to investigate the following questions:

• Can an  agent-based model of the Caltrain rail  network 
accurately reflect the properties and behavior of the real-world 
system?

• If trains are allowed to use current  passenger flow information 
to  define and modify their own routes, will the resulting 
system behave realistically?  If so, will it  exhibit a gain in 
efficiency and/or robustness over the real-world Caltrain?

• What local  and global behaviors can we identify as having a 
positive or negative correlation with the efficient operation of 
the rail network?

In attempting to answer these questions, we will look closely at 
specific behaviors of the transportation network as it operates 
throughout a typical weekday, but we will combine this 
observation with a study of the broad network properties and 
system-wide characteristics of the system. It  is our hope that the 
combination of these two modes of analysis  will result in a deeper 
understanding of the Caltrain network and the processes that 
govern its structure and performance.

4.METHODS AND EXPERIMENTS
The first goal of this project is to develop an agent-based model 
representative of the real-world Caltrain network. We use the 
SimPy framework for Python to define a set of agents and give 
each of those agents a list of operations to perform every time step 
(see section 5). Time steps are considered to each be a single 
minute of the day, with the simulation running for 1440 time steps 
to represent a single weekday.

4.1Data Sources
To both inform and verify this model, we use two data sources: 
the Caltrain annual ridership  data for 2011 [3] and the complete 
Caltrain route schedule encoded in GTFS format [4]. The 
ridership data is  used to generate a popularity distribution over all 
stations, with average weekday passenger activity “on” and “off” 
boarding counts dictating the popularity of all stations both as 
sources (“on”) and destinations (“off”). Additionally, the ridership 
data informs a peak usage modifier to passenger flow as follows:

time period station popularity modifier
midnight – 6 AM 0.5
6 AM – 8 AM 2.0
8 AM – 4 PM 1.0
4 PM – 6 PM 2.0
6 PM – 10 PM 1.0
10 PM - midnight 0.5

We use the GTFS route data to initialize the 31 stations  of the 
Caltrain network, including their latitude and longitude 

coordinates, and we will continue to use this data to validate our 
model. Specifically, we use information about  scheduled weekday 
trips to count  the number of connections between stations, train 
stop  events, and train movement events, so that  we may later 
compare these with the behavior of the model Caltrain.

4.2Smart Trains
To address the next goal of this  project, we added a degree of 
semi-autonomy to the trains themselves, giving them the ability to 
modify their routes in response to passenger activity. The central 
component of this feature is a payoff equation, I(train, origDest, 
dest) that evaluates  the relative impact of train  visiting dest 
instead of origDest. This equation takes the following form:

I(t, s0, s) = a(P) (d0 / d)x (R)

P  =  # of passengers on the train and waiting at the 
 current station who are traveling in the direction of s
d0 = distance to s0
d = distance to s
R = r if the train needs to change directions to travel to s
 1 otherwise

In order for a train to modify its  route such that  it visits dest 
instead of origDest, the payoff value I must exceed a baseline 
inertial payoff I0 for remaining on the regularly scheduled route 
and visiting origDest as planned. Thus:

snext = argmaxs {I0 | s = s0, I(t, s0, s) | s ≠ s0}

We have three constants in the payoff equation: a, x, and r, which 
balance the relative importances of helping as many passengers as 
possible, not traveling very far for a single stop, and not  reversing 
directions. Through a process that will  be described in section 4.3, 
we have set these constants as  follows: a = 2, x = 3, r = 0.1. We 
have also set I0 = 190.

4.3Verification and Adjustment
It is important to ensure that the semi-autonomous train model 
still exhibits broad network characteristics in line with those of the 
real-world Caltrain, because otherwise a direct comparison 
between the two would be difficult to make. To do this, we 
monitored four outputs while adjusting the constants of the payoff 
equation:

S the number of stations
C the number of direct connections between stations
 (such a connection exists between s1 and s2 if a train
 directly connects s1 to s2 at some point in the day)
Es the number of stop events
 (times when a train stops at a station)
Em the number of move events
 (times when a train moves between two stations)

With the final constant values from section 4.2, we have the 
following comparison between real-world and model networks:

Table 1. Real-world and model Caltrain network structure

real-world model

S 31 31

C 122 119

Es 2205 2112

Em 4293 4217



4.4Graphics
In addition to numerical validation, a graphical depiction of the 
system helps us both verify  and analyze the network’s behavior. 
We generate an overall network graph, as well as a detailed 
graphical representation that  animates throughout the course of a 
simulated weekday.

Figure 2. Network graph of the real-world Caltrain
system (left) and the model Caltrain system (right)

The overall network graph (see Figure 2) depicts stations as nodes 
and connections between stations as edges. The correspondence 
between the real-world Caltrain  network  graph and the model 
network graph lends greater support to the validity of our model 
as a representation of the Caltrain system.

Figure 3. A graphical view of the model Caltrain system.
The animated representation of the system depicts individual 
trains, their passengers, and the passenger queues at each station 
throughout the day. The green timeline at the top of the screen is 
traversed by a gray marker as  the day progresses. As this happens, 
trains (blue squares) move from station to  station (gray squares) 
along the railroad tracks (white horizontal  line). The northern 
terminus (San Francisco) is located on the left side of the screen, 
while the southern terminus (Gilroy) is on the right side.

Within the graphical display, passengers are represented by 
vertical bars. When riding a train, passengers are shown as a 
vertical white bar rising upward from that train. When waiting at a 
station, passengers are shown as a vertical  bar extending below 
that station, with the bar turning from white to  red as the average 
passenger wait time increases for that station’s queue.

The entire window is updated at every time step (every minute of 
simulation time). This simple graphical representation allows us to 
monitor the model’s progress throughout the simulation’s 
duration, debug any odd behavior, and make specific observations 
about agent interactions.

5.DESCRIPTION OF MODEL
5.1Agent Properties
The model we create utilizes  three main agent  types: trains, 
stations, and passengers. There is  also a fourth agent type, the 
overseer, which handles graphical  display and network analysis 
operations. These agents have the following properties:

TRAIN

id   a unique identifier
loc  current location (a station or “IN_TRANSIT”)
last  the last location visited
  (a station or “NO_STATION”)
speed  average speed
capacity  maximum passengers on board
passengers a list of passengers on board
route  a list of stations scheduled to be visited
routePos  position of the next stop in the route
dest  current destination
  (a station or “NO_STATION”)
distanceToDest distance left until dest is reached

STATION

id   a unique identifier
lat  latitude coordinate of the station
lon  longitude coordinate of the station
sourcePop popularity of the station as a source
destPop  popularity of the station as a destination
passengers a list of passengers waiting at the station
trains  a list of trains stopped at the station

PASSENGER

id   a unique identifier
loc  current location (a station or “IN_TRANSIT”)
train  current train (a train or “NO_TRAIN”)
dest  destination for the day’s journey (a station)
waitTime  amount of time spent waiting at a station

OVERSEER

time  the current time step in minutes since
  midnight
trips  a list of all trips (timed lists of train stop
  events)

5.2Agent Behavior
When the simulation  is running, each agent executes a sequence 
of operations every time step as follows:

TRAIN

– if the train is currently in transit
 – update distanceToDest
– if the train has arrived at a station
 – update loc and add this train to the station’s trains
– if the train is currently at a station
 – check for the next station along the route
 – look through all other stations in the system
  – if a station would be a more productive
     destination, add it to the route
 – update the train’s routePos and dest
 – wait at the current station for passengers to board
 – leave the current station
  – update loc and remove this train from the
     station’s trains



STATION

– do nothing

PASSENGER

– if this is the first minute the passenger is active

 – start at a station randomly weighted by sourcePop
 – choose a destination randomly weighted by destPop
– if the passenger is currently at a station
 – look for any train that will get the passenger closer to
    their destination
 – if a useful train is found
  – get on the train
– if the passenger is currently on a train
 – if the train has arrived at the passenger’s destination
  – get off the train and leave the simulation
 – if the train has arrived at a non-destination station
  – if the train is about to take the passenger 
     farther away from their destination
   – get off the train

OVERSEER

– draw the system’s current state in a graphical output window
– update the trips list to reflect any new stop events
– if we have reached the end of the day
 – compile trips into a GTFS route schedule
 – run network analysis routines
  – on the real-world Caltrain GTFS data
  – on the GTFS data generated from trips

6.DATA
A single run of our model rail network generates an alternate 
version of a complete weekday route schedule for Caltrain in 
GTFS format. We use this output, along with the original Caltrain 
GTFS data, to run a series of robustness evaluation routines 
(based on work from [7]) across both the real-world and model 
route schedules. The results of this procedure will aid our analysis 
of the relative merits of a semi-autonomous system compared to 
those of a set-schedule system.

At each step in this process, we will be modifying both transit 
systems in various ways and observing the results. Our 
observations take the form of two quantitative measurements: 
average trip time and fraction of passengers stranded. The former 
metric indicates how long it takes the average passenger to move 
through the system from their source to their destination. The 
latter metric represents  the percentage of passengers who are not 
able to make it to their destinations before the end of the day.

6.1Random Stop Removal
In the first of these robustness  tests, a random collection of stop 
events is removed from the system, with  10% of the total stop 
events being removed at each stage of the test.
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Figure 4. random stop removal (trip time)
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6.2Degree-Based Stop Removal
The second robustness test also involves removal of stop events, 
but instead of the events being selected randomly, they are now 
selected based on degree, with higher-degree stops being removed 
first.

6.3Late Arrival Simulation
Finally, we measure each system’s  response to late arrivals. At 
each stage of this test, we choose a random 10% of all  stop events 
and make them late by 60  seconds. We do this  iteratively up to a 
total effective lateness of 600(Es/10) seconds, where Es is the 
number of stop events, as defined in section 4.3.
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Figure 5. random stop removal (stranded)
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Figure 6. degree-based stop removal (trip time)
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Figure 7. degree-based stop removal (stranded)
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6.4Qualitative Observations
In addition to quantitative metrics, we can draw a number of 
qualitative observations from the behavior of the model 
throughout a day of simulation.

One observation  made early on was that  the removal of the 
direction change penalty R in the payoff equation results in a 
chaotic system that does not  serve passengers well at all. Because 
passengers board a train  with the hopes  of riding it  in the direction 
it  is  currently heading, they  are quite ill-served by a set of trains 
that constantly  reverse direction in response to passenger flows. 
Because the model does not account for train turnaround logistics, 
the benefit of changing directions is also greatly exaggerated if no 
penalty is present.

Another observation was the importance of at least some trains 
making local stops. There exist multiple stations along the 
Caltrain network, such as  Bayshore and San Martin, which 
represent less than 100 passenger boardings over the course of a 
weekday. These stations are a frustration to an optimization-
hungry train, as they represent a small payoff for the time required 
to  visit them. However, if a train is moving past a local stop 
anyway, it is important that it can occasionally prioritize distance 
over raw quantity of passengers, letting it  make that local stop in 
Bayshore on the way to San Francisco and picking up  the small 
contingent of passengers who would otherwise be left stranded 
and frustrated.

Finally, we have the somewhat counterintuitive observation that 
two popular stops located very close to each other present a 
troubling challenge to the model. Indeed, as Figure 10 shows, the 
second-to-the-right stop (22nd Street) accumulates a queue of 
unhappy passengers, while the rightmost stop (San Francisco) is 
served adequately  by the system. Both 22nd Street and  San 
Francisco have relatively high popularity among passengers, but 
San Francisco is the more popular destination. This results in a 
state where trains heading toward San Francisco do not consider a 
stop  at 22nd Street because San Francisco represents  a massive 
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Figure 8. late arrival simulation (trip time)
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payoff with only a few short minutes more time investment 
required. As a result, passengers looking to travel  north to San 
Francisco from 22nd street end up waiting in  an increasingly long 
and unhappy queue until the payoff becomes large enough to 
merit a stop by a northbound train.

7.DISCUSSION
7.1Representational Accuracy
The first goal of this  project is to effectively represent the Caltrain 
network with an agent-based model. With respect  to this goal, we 
see some degree of success. As seen in Table 1, the network 
characteristics of the model  system and those of the real-world 
Caltrain system share a great deal of resemblance. By initializing 
the model using parameters handed down from the real-world 
ridership data and adjusting the behavior of the payoff equation, 
we produce a model in which routing decisions are made using a 
different process than in the real-world, but result in a similarly 
structured transportation network.

Furthermore, as  we consider the system robustness metrics 
detailed in sections 6.1-6.3, we see that while the model network’s 
response curves  often differ in magnitude from those of the real-
world network, the two systems’  curves often exhibit  similar 
overall trends. For example, in Figure 7 (stranded passengers for 
degree-based stop removal) we see that  both networks reach  a 
peak of stranded passengers at 50% of stops removed, and similar 
correlations can be seen throughout the other metrics. To confirm 
that this  correlation is indeed due to  network similarity, we can 
see from [7] that the exact  robustness metrics  used here often 
produce distinct response curves on different real-world transit 
networks. Thus, the correlation here appears to represent a notable 
degree of similarity between the model and its real-world 
equivalent.

The result of these findings is  that we can conclude that  the sort of 
semi-autonomous agent-based representation of the Caltrain 
network which we have created here does in fact correspond to the 
real-world structure which it aims to represent.

7.2Effectiveness of Semi-Autonomy
Beyond simply creating an alternate version of the Caltrain 
network, we seek to  evaluate the performance of this  version 
against that  of the real-world network. For this, we turn again  to 
the metrics from sections 6.1-6.3, but with an eye toward the 
relative successes  and failures of each network under stress 

Figure 10. A long, unhappy queue at 22nd Street



simulation. Immediately apparent is an overall  trend of the real-
world Caltrain network performing more robustly than the 
constructed one, but we will examine the results more closely.

In random stop removal, the model Caltrain  performs significantly 
more poorly at each point  in the simulation than the real-world 
Caltrain, both in terms of trip time (Figure 4) and stranded 
passengers (Figure 5). However, in degree-based stop removal, 
the story is slightly different. The model Caltrain exhibits a 
similar rapid collapse in  trip time as  the real-world Caltrain does 
(Figure 6), with both networks falling into states where almost all 
trips become very short by the time 30% of stops are removed. On 
the other hand, the stranded passenger response curves (Figure 7) 
tell a slightly different story, in  which the model Caltrain strands 
about 60% fewer passengers than the real-world  Caltrain does up 
until the network collapse takes place at 30% stops removed.

It appears that while the model Caltrain is  not generally more 
robust in  response to stop removal, it does have the ability to lose 
its high-degree nodes and continue ferrying passengers to their 
destinations. This is likely due to the less stringent encoding of 
specific transfer stations or connections in the model  network, 
lending it more flexibility in the face of losing its higher-degree 
stops.

Finally, in the last  robustness metric, late arrival simulation, the 
broader trend continues, with the model Caltrain  exhibiting a 
more rapidly increasing average trip time (Figure 8) than the real-
world Caltrain, with  the gap widening significantly after 240 
seconds of delay. The stranded passenger response graph is a bit 
more muddled, with  no certain winner, as both networks claim the 
advantage for various segments of the simulation.

Overall, we cannot assert that the semi-autonomous version of the 
Caltrain network  produces  meaningful gains  toward system 
efficiency or robustness. Rather, this alternative appears to 
noticeably reduce robustness  as measured by several metrics, even 
if it  yields  moderate advantages in  a few cases. As such, the 
second goal of this project  is not  successful, but we believe that 
further exploration of route definition methods and additional 
work on the payoff equation could yield significant gains in this 
area.

8.LIMITATIONS AND CRITIQUE
While the model network presented here has been shown to share 
many properties with the real-world Caltrain network, and the 
model has behaved in accordance with expectations under 
scrutiny during simulations, there are still a number of limitations 
that must be acknowledged, along with several  possible directions 
for further improvement, refinement, and inquiry.

First, while the model  does encode some notion of geography 
(stations have latitudes and longitudes), there is  no directly 
encoded notion of tracks, which are integral to the design  and 
function of a rail  network. Indeed, the simple action of having a 
train reverse directions or pass another train becomes significantly 
more complex when paired with the notion of one-way railroad 
tracks with limited junction points.

On another front, passenger flow remains rather rudimentary in 
the current model. Passengers behave greedily, taking any train 
that gets them closer to their destination, but this  represents a 
rather bleak picture of the human travel  experience. Borrowing 

some perspective from the work of Arentze and Timmermans, it 
would be an interesting exercise to consider a more nuanced 
passenger travel model, in which the system is simply a means to 
an end, rather than the entirety of a passenger’s life cycle.

From a practical standpoint, larger and broader quantities of data 
could provide additional avenues for expansion and exploration. 
As it  stands, Caltrain’s ridership data records when passengers 
board and exit trains, but there is little information on when 
passengers arrive at stations, transfer trains, or make return trips. 
This information, along with further details on how actual day-to-
day train  and passenger movement patterns may differ from the 
scheduled patterns, would all contribute to a useful basis for 
further investigation.

Finally, this study is  limited in scope in that  it focuses specifically 
and exclusively on the example of the Caltrain system. While 
Caltrain makes for an interesting case study, it  is  not 
representative of all transit  networks, or even all  rail  networks. 
The linear nature of Caltrain makes it an approachable system to 
visualize and explore, but it also differentiates it  from the massive 
number of non-linear rail and transit systems across the world. As 
such, it is  difficult  to determine whether the results of this study 
have bearing on other transportation networks beyond Caltrain, 
making this an avenue ripe for future inquiry.
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