
ABSTRACT
Public transportation systems across the United 
States serve millions of riders every  day, forming cru-
cial  links between people and their daily  destinations. 
In  this work, we develop a method for  modeling pub-
lic transportation  systems as network graphs. We use 
the resultant graphs to study the properties  of 18 pub-
lic transportation  systems from  cities and counties in 
the United States and Canada. Furthermore, we de-
velop a simple model  for  passenger behavior and use 
it to test the relative robustness of these networks.

1. INTRODUCTION
Recently, public transportation  agencies across the 
United States, Canada, and a handful  of  other coun-
tries have been  making  information  about  their sys-
tems publicly available online in the General  Transit 
Feed Specification (GTFS) format. This allows appli-
cations such  as Google Transit  to be built, which use 
this data to help passengers plan  their  trips. At  the 
same time, this data provides  a wealth  of raw material 
for  an  analysis of  the properties and behavior  of pub-
lic transportation systems.

In  basing this study on GTFS data, we have developed 
a set of  routines that interpret an arbitrary GTFS feed 
as a transportation  network graph. The routines are 
then able to measure static properties of the network, 
including  degree distribution, average path length, 
clustering  coefficient, degree-degree correlation, and 
betweenness. Next, the routines can run passenger 
simulations over  the network and gather data  on  how 
riders are affected when the network is modified. 
These modifications  include removing stops ran-

domly, removing  stops based on node degree, and 
simulating vehicle lateness across the network.

The advantage of this general  set of routines  is that  it 
can  be applied to any transportation  network speci-
fied in GTFS format. This has allowed us to collect 
data on 18 networks (including bus, rail, and ferry 
lines), but also holds  the promise of  being extendable 
to other networks across the world as more transpor-
tation agencies release GTFS feeds for their systems.

2. RELATED WORK
Previous work in public transportation  network re-
search  has focused heavily on  analyzing the network 
properties of specific transportation  systems and on 
building  models that facilitate comparisons between 
systems in different cities.

The study  most similar  to ours, Sienkiewicz and 
Hołyst [8], examines the properties of  public trans-
portation networks  in  22 Polish  cities. The authors 
measure these networks with universal tools of com-
plex network analysis and find that  networks of vary-
ing size exhibit common features, such  as  degree dis-
tributions  and a  power-law decay  of clustering coeffi-
cients for large node degrees.

In  Seaton and Hackett [6], the Boston subway  system 
is compared with  one in Vienna and it is  found that 
both networks satisfy  small-world criteria. The 
authors  are able to use bipartite graph  theory  to pre-
dict the value of average degree, but are unable to 
make reliable predictions with regard to other  net-
work properties.
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Latora and Marchiori  [4] examine the properties of 
the Boston  subway system  and propose a measure-
ment of local  and global  network efficiency. The 
authors  find that while the system is efficient on  a 
global  scale, the local  efficiency is very  low, indicating 
that damage to (or removal  of) a single station will  be 
highly  detrimental  to the connections between its ad-
jacent stations.

Sen et al. [7] study  the Indian railway network, defin-
ing nodes as corresponding to individual  stations and 
links as pairs of stations connected by  a single train. 
The authors find that mean distance is a suitable 
measure for the network’s connectivity  and use it to 
highlight the Indian  railway network’s small-world 
properties.

While several  studies have analyzed the network 
properties of  public transportation  systems, we be-
lieve that no study has used precise stop time data  (as 
is available in  the GTFS format) for  analysis  and 
simulation. Furthermore, we believe that  the incorpo-
ration  of  a passenger behavior model with simulations 
of network effectiveness is a novel  approach in  this 
area of inquiry.

3. NETWORK
REPRESENTATIONS

The initial  problem  posed by  transportation network 
analysis is one of representation. How should we in-
terpret the real-world transportation system as a net-
work graph in order  to facilitate analysis and simula-
tion? To meet  the needs of this  study, we present two 
representations: one which will  allow us to measure 
general  network properties (GN), and one which will 
allow us to simulate the effect of network  modifica-
tions on passengers (G).

GN: A general representation
The purpose of  GN  is to allow us to measure degree 
distribution, clustering  coefficient, degree-degree cor-
relation, and betweenness in  a network. In GN, each 
stop or station  in the transportation network is repre-
sented as  a single node. A weighted, directional  edge 
is created between two nodes if  there is a  route that 
connects  the two stops directly without any interme-
diary  stops. This edge is weighted by the average 
amount of time in  seconds it takes to travel  between 

the two stops across all  routes that connect them  in 
the relevant direction.

G: A detailed representation
While GN serves our  purposes well  for the analysis of 
general  network properties, it does not provide the 
level of granularity  necessary to accurately  view the 
network as a passenger  would while trying to navigate 
it. In order to achieve this, we propose the specific 
representation  G, which  fully  models the existence of 
individual trips along each route throughout a day.

In  G, each node represents a  single stop at a  specific 
point in  time. Each  node is identified by the stop (s) 
along with  a count of  seconds since midnight (t). Each 
edge represents a single trip along a  single route that 
connects  stops s0 and s, occupying the time between t0 
and t. Each  edge is directional  (forward in time) and 
is weighted by the value t - t0.

Figure 1: GN for the arbitrary Demo Transit Agency

Figure 2: G for the arbitrary Demo Transit Agency



Modeling Passengers
If the purpose of G is to provide an  accurate represen-
tation of  the network as a  passenger  would see it, our 
next step is  to develop a  model for passenger behavior 
across G. Existing models for passenger  actions can 
be seen  in  [3] and [5], but we propose a  simplified 
model for the purposes of this study:

1. For each passenger pi among j total passengers

a. Choose a  random source node u and a random 
destination node v, where u ∈ G and v ∈ GN.

b.Find the set of nodes V in G such that for all
n ∈ V, s(n) = s(v) and t(n) >= t(u), where s(n) is 
the stop ID and t(n) is the number of seconds 
past midnight for node n.

c. Calculate the weight, w(u,n) of the shortest 
path between u and n in G for all n ∈ V.
Assign pi[weight] = min( w(u,n) , n ∈ V).
If there is no path between u and any  n ∈ V, 
assign pi[weight] = 0.

2.Obtain a measurement for the average trip time:
wavg = avg( pi[weight], where pi[weight] ≠ 0 )

3.Obtain a measurement for the fraction  of stranded 
passengers:
s = count( pi, where pi[weight] = 0 ) / j

The above model represents each passenger  as being 
currently  located at a node in G and planning to travel 
to a  node in GN. This means that there is a  time vari-
able associated with each  passenger’s  source position, 
but not with  their destination. The model  proceeds by 
finding  the shortest path in G from  the source posi-
tion  to any node later in  time with the same stop ID as 
the destination.

The result is that each passenger will  either  complete 
their journey in  some number of seconds (their trip 
time), or will  become stranded because it  is impossi-
ble to reach  their chosen destination  before the end of 
the day. We draw from  this  the general  network prop-
erties for average trip time, wavg, and fraction of pas-
sengers stranded, s.

4. MEASUREMENTS
We define measurements for network properties, in-
cluding  average path  length, clustering coefficient, 
degree-degree correlation, and betweenness.

Average path length
Choose node u with the maximum degree of all nodes 
in  G. Define short(v) to be the length  of the shortest 
path between  u and node v in  G. Compute the average 
path length,

L = avg( short(v), for all v ∈ G where v ≠ u )

Clustering coefficient
For each  node v in GN, compute the clustering  coeffi-
cient,

cv = [2 T(v)] [deg(v)]-1 [deg(v) - 1]-1

where T(v) is the number of triangles  through node v. 
We can  then compute the average clustering coeffi-
cient across the network,

C = avg( cv, for all v ∈ GN )

Degree-degree correlation
We use the method specified in  [8] to calculate the 
assortativity coefficient,

where i iterates over  all  pairs of  nodes  in  GN. ji and ki 
are the degrees of the nodes.

Betweenness
We use the algorithm  from  [1] for each  node v in GN 
to calculate betweenness centrality,

where V  = GN, σst is  the number of shortest paths 
from  s ∈ V  to t ∈ V, and σst(v) is the number of  short-
est paths from  s  to t that v lies on. We can  then com-
pute the average betweenness,

B = avg( CB(v), for all v ∈ GN )



5. ANALYSIS
Data gathered in  this  study  includes degree distribu-
tions, the network properties detailed in Table 1, and 
the results of three network modification simulations.

Degree distribution

0

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10

normalized degree distribution of GN

fr
eq

ue
nc

y

degree

BART Broward Caltrain
Capmetro CDTA CHT
COTA Delaware DTA
GOT Metrolink MVTA
NYC OCTA SACRT
SRCB TANK SFBay

The above graph shows degree distributions  across 
GN for each  of the 18 public transportation networks. 
Lines are colored based on network type, with  red 
representing bus lines, blue representing rail  systems, 
and green representing the single ferry network.

We observe that degree distributions assume distinct 
and predictable forms that depend directly  upon a 
network’s  type. Bus networks contain a  majority of 
nodes with  degree 2, while rail  networks contain  a 
majority  of  nodes  with degree 4. It is difficult to de-
termine a  similar pattern  for ferry  networks based on 
the single data point we have, but it is reasonable to 
imagine that they would possess a characteristic de-
gree distribution  as well. These results  suggest that it 
would be feasible to build a  classifier  to determine 
network type based solely on degree distribution.

Average path length
According to [7], mean distance or average path 
length should be a suitable measure of network con-
nectivity, and thus also network effectiveness. Based 
on this measure alone, we would have SACRT and 
COTA  as top performers and NYC, Capmetro, and 
MVTA at the bottom.

network location type n n’ L C D B
BART
Broward
Caltrain
Capmetro
CDTA
CHT
COTA
Delaware
DTA
GOT
Metrolink
MVTA
NYC
OCTA
SACRT
SFBay
SRCB
TANK

San Francisco, CA rail 46 17047 14301.9 0.0688 0.0897 0.1936
Broward County, FL bus 4847 338818 10884.5 0.0064 0.2646 0.0211
San Francisco, CA rail 31 2232 25036.1 0.4869 0.1022 0.1045
Austin, TX bus 2870 349597 27940.0 0.0332 0.2663 0.0156
Albany, NY bus 2997 160203 13512.7 0.0390 0.3899 0.0214
Chapel Hill, NC bus 623 33309 8510.7 0.0367 0.4430 0.0455
Columbus, OH bus 4236 298093 6947.5 0.0089 0.4519 0.0137
Wilmington, DE bus 2816 123948 24982.0 0.0441 0.3311 0.0183
Duluth, MN bus 1681 102668 8653.3 0.0236 0.4112 0.0530
Toronto, Ontario, Canada bus 1526 61021 17805.1 0.0175 0.1606 0.0287
Los Angeles, CA rail 56 1926 13969.8 0.1149 0.0006 0.1520
Burnsville, MN bus 941 24443 28434.5 0.0335 0.2826 0.0421
New York, NY rail 492 395033 27604.8 0.0606 0.3542 0.0118
Orange County, CA bus 6233 399261 17019.9 0.0120 0.2152 0.0127
Sacramento, CA bus 3065 136496 6765.6 0.0054 0.1807 0.0232
San Francisco, CA ferry 10 484 15937.1 0.6603 -0.7273 0.0944
Santa Rosa, CA bus 459 18782 8453.0 0.0059 0.0880 0.0381
Ft. Wright, KY bus 1517 61249 11971.7 0.0439 0.3220 0.0350

Table 1: Information and network properties for the 18 public transportation networks considered in this study. 
n is the number of stops (nodes in GN), n’ is the number of stop times (nodes in G), L is the average path length, 
C is the clustering coefficient, D is the degree-degree correlation, and B is the betweenness.



Bus networks have an average path length  of 14760, 
while rail  networks have an average of 20228. At  the 
same time, bus networks have an  average of 2601 
stops, while rail networks average 156 stops.

We observe a  slight downward trend in  average path 
length with  increased n, but this alone does not ap-
pear  to fully  represent  the difference between the val-
ues for bus and rail networks.

Clustering coefficient
The clustering  coefficient, C, represents the probabil-
ity that two arbitrary  neighbors of  a  node share a 
common link. In  [8], a  small  decrease in C was ob-
served with increasing network size.

We observe a dramatic decrease in  C between very 
small  networks (n < 100) and slightly  larger ones, as 
well  as  a  small decrease in  C among larger networks 
with n > 100.
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Average C is 0.0239 for  bus networks and 0.1828 for 
rail  networks, representing a portion  of the gap be-
tween small networks and large ones.

Degree-degree correlation
The degree-degree correlation, D, is shown to be posi-
tive in  all  cases except for  the SFBay ferry  network 
(see Table 1). Transportation networks have few 
nodes with  high  degree and these nodes are usually 
linked with each  other, resulting  in a positive D value. 
The SFBay network defies this  trend because it is ac-
tually  a collective representation  of several  individual 
ferry agencies in the San  Francisco Bay (Blue & Gold 
Fleet, Harbor  Bay Ferry, Baylink, and Golden Gate 
Ferry). This structure results in  weakly  linked net-
work subsets that reduce D.

Average D is  0.2929 for  bus networks and 0.1367 for 
rail  networks, with SRCB having  an unusually low D 
for  a bus system and NYC having  a high  D for a  rail 
system. Bus networks tend to have fewer high-degree 
nodes than  rail  networks, which  makes it  easier for 
these nodes to be linked and increases D.

Betweenness
Betweenness, B, allows us to measure the average im-
portance of a  node. In general, rail  networks have 
high  B (> 0.1), although NYC has  the lowest B of any 
network studied. SFBay  has a  high  B as well  at 
0.0944, significantly higher than  all  bus networks, 
which  have B < 0.06. Averages are 0.0283 for bus 
networks and 0.1155 for rail networks.
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NYC continues to be an outlier  for rail  networks, likely 
due to its size and its segmented structure across a 
large area.

Network size plays  a  similar role for betweenness as it 
does for clustering. We observe a dramatic decrease 
between very small networks (n < 100) and other 
networks. Beyond this, B exhibits a small  decrease as 
network size increases above n = 100.

Random stop removal
In  this study, our  goal  is to investigate the characteris-
tics of transportation  networks both  as static incarna-
tions of complex  networks and as dynamic real-world 
entities working  to meet the needs of passengers on a 
daily  basis. To pursue the latter area  of  study, we have 
subjected each  network to three robustness tests and 
monitored the effect on  passengers. The first of  these 
tests is a random removal of stops.
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We see the effects of random stop removal  on  rail 
networks. These effects are measured both  in terms of 
average passenger trip time and fraction of  passen-
gers stranded, in  accordance with the passenger  ac-
tion model presented earlier.

As predicted in [4], removing stops is  highly  detri-
mental  to the network. After  only 20% of stops are 
removed, the majority  of rail  networks become frag-
mented to the point where reaching one’s destination 
is very  difficult. At the same time, we see that some 
networks are more resilient toward this decomposi-
tion than others.
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The above graphs display the average network be-
havior as a  dotted black line and show specific data 
only for networks that are outliers for this test.

We observe that removing 10% of  stops from almost 
all  bus networks has the effect of  crippling  the net-
work’s ability  to serve passengers to an extent not 
seen with  rail  networks at 10%  removal. CHT is 
shown to be the most resilient bus network in this 
test.

Degree-based stop removal
We now perform a  second test on each  network by 
removing stops in order of decreasing degree.
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We observe that removing stops in  order of decreas-
ing degree does not produce a dramatically different 
result than  removing stops randomly for most rail 
networks. The exception  to this  trend is  Caltrain, 
which  displayed a relatively high  level  of resilience 
toward random  stop removal, but exhibited average 
resilience toward degree-based stop removal. This is 
likely  because Caltrain  is a  linear system  of standard 
and express trains. By removing  the high-degree stops 
first, we remove the local  transfer junctions and frag-
ment the system  to an extent not seen with  random 
stop deletion.
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As with  random stop removal, the above graphs dis-
play an average of all bus networks and any outliers.

With bus  networks, degree-based stop removal  is 
found to not be an  effective measure of resilience. By 
the time 10% of stops are removed, every bus network 
tested will become fragmented and unusable by pas-
sengers. As with  random stop removal, CHT is slightly 
more resilient than other bus networks.

Lateness simulation
The final test of network resilience performed in  this 
study is a  simulation  of vehicle lateness. At each  step 
in  the simulation, 10% of  vehicle trips are made 60 
seconds late to their destination.
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Because this test does not result in  the widespread 
fragmentation of the network, we can  observe more 
gradual  changes in network utility. Linear regression 
across these results yields a  trip time growth  factor, kt, 
and a stranded passenger  growth  factor, ks (Table 2). 
These factors provide a standard metric for robust-
ness, which we can use to compare networks.

network kt ks

BART
Caltrain
Metrolink
NYC

4.21 0.76
8.80 2.23
21.37 4.97
2.78 0.91

We observe that Metrolink is significantly less robust 
than other rail networks in  response to late trains, 
while BART and NYC avoid significant disruption.

Despite NYC’s above-average performance in the 
lateness simulation, it exhibits a much  higher fraction 
of stranded passengers than  any other  network, even 
in  its unperturbed state. This is likely due to a  limita-
tions of this study where a passenger  is considered 
stranded if they  cannot reach  their destination  by the 
end of the day. The New York City  Subway  system  is 
one of  a few public transportation agencies  in the 
United States to operate continuously, 24 hours per 
day. Because our passenger  action model  cuts  off  at 
midnight, it is unable to fully represent NYC.
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Table 2: Trip time growth factor (kt) and stranded 
passenger growth factor (ks) for rail networks across 
lateness simulation.



As in  previous tests, the above graphs display  an aver-
age of all bus networks along with any outliers.

We expect trip time and stranded passengers  to 
monotonically increase during the lateness simula-
tion, but many  networks defy  this expectation. This 
could be an artifact of the random elements of the 
passenger action  model, but it  is also likely  that there 
are cases where one or  more trips running  late actu-
ally represent an advantage for passengers.
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Consider  a stop that  is visited by  three buses (ba, bb, 
and bc) at times t=0, t=2, and t=3, with  a  fourth  bus, 
bx, scheduled to visit at t=1 before continuing on to a 
structurally important destination. As  scheduled, bx 
will  only be able to transport passengers from ba to 
the important destination. However, if bx runs late 
and visits  the stop at t=4 instead, it will  be able to 
transport passengers from ba, bb, and bc to the impor-
tant destination.

network kt ks

Broward
Capmetro
CDTA
CHT
COTA
Delaware
DTA
GOT
MVTA
OCTA
SACRT
SRCB
TANK

40.54 14.70
22.79 6.29
20.11 8.41
19.56 6.65
27.85 10.91
17.75 9.92
28.31 12.44
19.69 8.33
28.51 11.53
42.27 13.03
-7.19 14.09

28.65 7.71
34.02 12.70

Corresponding to results from previous tests, CHT 
continues to be more resilient than the majority of 
other bus networks. It is also notable for  having the 
second-highest degree-degree correlation  of  all  net-
works studied, with  the highest being for  COTA, a 
much larger network. Indeed, CHT is the second-
smallest of  the bus networks at n = 623, larger than 
only SRCB. CHT also has a  below-average average 
path length, above-average clustering  coefficient, and 
above-average betweenness for  a  bus network. All  of 
this information  portrays a small, strongly  connected, 
and efficient transportation network.

Overall, we see greater kt and ks with  bus networks 
than we do with  rail  networks. This follows the trend 
seen with  random and degree-based stop removal, 
and is  somewhat surprising. Intuitively, rail  networks 
would seem to be less  flexible with  regard to missing 
stations or late trains, due to the sparsity of their 
stops and stop times relative to bus networks.

Table 3: Trip time growth factor (kt) and stranded 
passenger growth factor (ks) for bus networks across 
lateness simulation.



6. CONCLUSIONS
Public transportation systems present a wealth  of op-
portunities for analysis  and simulation. This  is be-
coming  increasingly true as more transit agencies 
make data about their  systems available to developers 
in  the GTFS format. The analysis presented in this 
work is intended to be a starting point for  general 
analysis of arbitrary transportation  networks, which 
we believe is possible through  the extension and re-
finement of the tools and routines developed here.

One such refinement is  necessary in  relation  to the 
stop removal  simulations presented above. Because 
nearly  all bus networks were severely fragmented by 
the time 10% of their  stops were removed, a more 
delicate approach is called for. Such  a  refined ap-
proach  would ideally  allow for more effective differen-
tiation among bus networks than  was possible in  this 
study’s stop removal simulations.

Additionally, we envision  multiple extensions to our 
passenger action model. One such extension  would be 
to incorporate power-law human  movement distribu-
tions into the destination  selection process, as de-
tailed in [2]. Another  extension  would use fare infor-
mation  available in  GTFS datasets to incorporate fi-
nancial cost into the shortest path calculation. Finally, 
it could be beneficial to extend the stranded passenger 
metric to account for the distance remaining  to the 
destination, which  would provide more information 
than the current binary  stranded/not-stranded im-
plementation.
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